Friday, November 20, 2015

Binary Indexed Tree In 2D , 2D Binary Indexed Tree

vector<vector<int>> matrix;   
int M = matrix.size(), N = matrix[0].size();   
// update > > sum   
// update O(1); sum O(n^2)   
[size=13.3333330154419px]set O(1)
[size=13.3333330154419px]sum O(n^2)
void update(int r, int c, int val) {   
    matrix[r][c] = val;   
}   
// (r1,c1) upper left, (r2,c2) bottom right   
int sum(int r1, int c1, int r2, int c2) {   
    int res = 0;   
    for (int i = r1; i <= r2; ++i) {   
        for (int j = c1; j <= j2; ++j) {   
            res += matrix[i][j];   
        }   
    }      
    return res;   
}   
// sum > > update   
// dp[i][j] computer sum of rectangle [0,0] --- [0,j] --- [i,0] --- [i,j]   
// update O(n^2), sum O(1).   
[size=13.3333330154419px]set O(n^2)
[size=13.3333330154419px]sum O(1)
vector<vector<int>> dp(M,vector(N,0));   
void compute() {   
    dp[0][0] = matrix[0][0];   
    for (int j = 1; j < N; ++j) {   
        dp[0][j] = dp[0][j-1] + matrix[0][j];   
    }   
    for (int i = 1; i < M; ++i) {   
        dp[i][0] = dp[i-1][0] + matrix[i][0];   
    }   
    for (int i = 1; i < M; ++i) {   
        for (int j = 1; j < N; ++j) {   
            dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + matrix[i][j];   
        }   
    }   
}   
  
void update(int r, int c, int val) {   
    int dif = val - matrix[i][j];   
    for (int i = r; i < M; ++i) {   
        for (int j = c; j < N; ++j) {   
            dp[i][j] += dif;   
        }   
    }   
}   
int sum(int r1, int c1, int r2, int c2) {   
    if (r1 == 0 && c1 == 0) return dp[r2][c2];   
    else if (r1 == 0) return dp[r2][c2] - dp[r2][c1-1];   
    else if (c1 == 0) return dp[r2][c2] - dp[r1-1][c2];   
    else return dp[r2][c2] - dp[r1-1][c2] - dp[r2][c1-1] + dp[r1-1][c1-1];   
}   
// sum ~= update   
// update    
[size=13.3333330154419px]set O(n)
[size=13.3333330154419px]sum O(n)
vector<vector<int>> dp(M,vector(N,0));   
// row dp; dp[i][j] = sum_i_{k = 0}^{k = j};   
void compute() {   
    for (int i = 0; i < M; ++i) {   
        for (int j = 0; j < N; ++j) {   
            if (j == 0) dp[i][j] = matrix[i][j];   
            else dp[i][j] = dp[i][j-1] + matrix[i][j];   
        }   
    }   
}   
void update(int r, int c, int val) {   
    int dif = val - matrix[i][j];   
    for (int j = c; j < N; ++j) {   
        dp[r][j] += dif;   
    }   
}   
int sum(int r1, int c1, int r2, int c2) {   
    int res = 0;   
    for (int i = r1; i <= r2; ++i) {   
        res += c1 == 0 ? dp[i][c2] : dp[i][c2] - dp[i][c2-1];   
    }   
    return res;   
}  
[size=13.3333330154419px]set O(log n)
[size=13.3333330154419px]sum O(log n)
Solution:
Lets take an example:
Given a matrix M[R][C], initially set to 0.
We have 2 operations:
1. set r,c,Value element to value.
2.range sum r1,c1,r2,c2  ; return the sum of all the elements r,c such that r1<=r<=r2, c1<=c<=c2;


This can be done using Fenwick 2D Point updation Tree.
1. Use update(r,c,Value) for 1st operation;
void update(int x , int y , int val){
int y1;
while (x <= max_x){
    y1 = y;
    while (y1 <= max_y){
        tree[x][y1] += val;
        y1 += (y1 & -y1);
    }
    x += (x & -x);
}
}
2. read(r1,c1,r2,c2) = read(r2,c2) - read(r2,c1-1) - read(r1-1,c2) + read(r1-1,c1-1);
int read(int x,int y){ // return sum from 1,1 to x,y.
       int sum= 0;         
         while( x){
              int y1 = y;
             while(y1){
                 sum += tree[x][y1];
                   y1 -= y1 & -y1;
            }
            x -= x & -x;
        }
      return sum;
}
import java.lang.*;
public class BIT2DSumAndUpdate {
//    Given an NxN matrix of positive and negative integers, write code to find the
//    range sum and update matrix
 
 
 
    // Approach#1 sum: O(n^2) time, update:O(1) time.
    static int sum(int[][] matrix, int r1, int c1, int r2, int c2) {
        int sum = 0;
        for (int r = r1; r <= r2; ++r) {
            for (int c = c1; c <= c2; ++c) {
                sum += matrix[r][c];
            }
        }
        return sum;
    }
    static void update (int[][] matrix, int r1, int c1, int val){
        matrix[r1][c1] = val;
    }

    // Approach#2 sum: O(1) time, update:O(n^2) time.
    static int[][] processMatrix(int[][] m) {
        if (m == null) return null;
        int[][] sumMatrix = new int[m.length][m[0].length];
        sumMatrix[0][0] = m[0][0];
        for (int j = 1; j < m[0].length;j++){
            sumMatrix[0][j]=sumMatrix[0][j-1]+m[0][j];
            //System.out.println(0+","+j+" - "+sumMatrix[0][j]+",");
        }
        for (int i = 1; i < m.length;i++){
            sumMatrix[i][0]=sumMatrix[i-1][0]+m[i][0]; 
            //System.out.println(i+","+0+" - "+sumMatrix[i][0]+",");
        } 
        for (int i =1; i< m.length;i++) {
            for (int j=1; j < m[0].length;j++){
                sumMatrix[i][j] = sumMatrix[i-1][j]+sumMatrix[i][j-1]-sumMatrix[i-1][j-1]+m[i][j];
                //System.out.println(i+","+j+" - "+sumMatrix[i][j]+",");
            }
            
        }
        return sumMatrix;
    }         
    static int sum2(int[][] sumMatrix, int r1, int c1, int r2, int c2) {
       if (r1 == 0 && c1 == 0){
           return sumMatrix[r2][c2];
       }
       else if (r1 == 0){
           return sumMatrix[r2][c2]-sumMatrix[r2][c2-1];
       } 
       else if (c1 == 0 ){
           return sumMatrix[r2][c2]-sumMatrix[r1-1][c2];
       } else {
           return sumMatrix[r2][c2]-sumMatrix[r2][c1-1]-sumMatrix[r1-1][c2]+sumMatrix[r1-1][c1-1];
       }
    }
    static void update2(int[][] matrix, int[][] sumMatrix,int r1, int c1, int val){
         int diff=  val - matrix[r1][c1];
         for (int i = r1; i < sumMatrix.length;i++){
             for (int j = c1; j< sumMatrix[0].length; j++){
                 sumMatrix[i][j]+=diff;
             }
         }
    }

    
    // Approach#3 sum: O(log n) time, update:O(log n) time.
    static int[][] processMatrixTree(int[][] m) {
        if (m == null) return null;
        int[][] tree = new int[m.length+1][m[0].length+1];
        for( int i = 1; i <= m.length;i++){
            for(int j = 1; j <=m[0].length;j++){
             //System.out.println(i+","+j+". sumFirst="+tree[i][j]);
             updateBuilde3(tree, i, j, m[i-1][j-1]);
            }
        }
        return tree;
    }    
    static int sum3(int[][] tree, int r1, int c1, int r2, int c2) {
       if (r1 == 0 && c1 == 0){
           return getSum(tree,r2,c2);
       }
       else if (r1 == 0){
           return getSum(tree,r2,c2)-getSum(tree,r2,c2-1);
       } 
       else if (c1 == 0 ){
           return getSum(tree,r2,c2)-getSum(tree,r1-1, c2);
       } else {
           return getSum(tree,r2,c2)-getSum(tree,r2,c1-1)-getSum(tree,r1-1, c2)+getSum(tree,r1-1,c1-1);
       }        
    }
    static int getSum(int[][] tree, int i, int j){
        int sum = 0;
        //System.out.println(i+","+j+". sumAdd="+sum);
        i = i+1;
        j = j+1;
        int j1;
        while(i > 0) {
            j1 = j;
            while(j1 > 0){
                sum += tree[i][j1];
                ///System.out.println(i+","+j1+". sumAdd="+sum);
                j1 -= j1 & -j1;
            }
            i -= i & -i;
        }
        return sum;
    }
    static void updateBuilde3(int[][] tree, int i, int j,  int val){
         //int diff=  val - matrix[r1][c1];
         int j1;
         while(i < tree.length){
             j1 = j;
             while(j1 < tree[0].length){
                 tree[i][j1] += val;
                 //System.out.println(i+","+j1+". sumAfter="+tree[i][j1]);
                 j1 += (j1 & -j1);
             }
             i += (i & -i);
         }
    }  
    static void update3(int[][] matrix, int[][] tree, int i, int j, int val){
        int diff=  val - matrix[i][j];
        int j1;
        while(i < tree.length){
            j1 = j;
            while(j1 < tree[0].length){
                tree[i][j1] += diff;
                //System.out.println(i+","+j1+". sumAfter="+tree[i][j1]);
                j1 += (j1 & -j1);
            }
            i += (i & -i);
        }
   }    
    
    
    //--------------------------------------
    public static void main(String[]args) {
        int[][] m = {
                {1,-2,3,1},
                {1,5,-4,1},
                {1,1,0,2},
                {-1,1,1,-8}};
        int[][] m2 = {
                {1,-2,3,1},
                {1,5,-4,1},
                {1,1,0,2},
                {-1,1,1,-8}};
        int[][] m3 = {
                {1,-2,3,1},
                {1,5,-4,1},
                {1,1,0,2},
                {-1,1,1,-8}};    
                
        long start =  System.nanoTime();     
        int sum1_1 = sum(m,0,0,2,3);
        long end = System.nanoTime();
        update(m, 2,3,3);// 2->3
        int sum1_2 = sum(m,0,0,2,3);        
        System.out.println("Time:"+(long)(end-start)+",sum=" +sum1_1+",sum2=" +sum1_2);
         
        int[][] sumMatrix = processMatrix(m2); 
        long start2 = System.nanoTime();
        int sum2_1 = sum2(sumMatrix,0,0,2,3);
        long end2 = System.nanoTime();
        update2(m2, sumMatrix, 2,3,3);// 2->3
        int sum2_2 = sum2(sumMatrix,0,0,2,3);
        System.out.println("Time:"+(long)(end2-start2)+",sum=" +sum2_1+",sum2=" +sum2_2);
        
        int[][] tree = processMatrixTree(m3);
        long start3 = System.nanoTime();
        int sum3_1 = sum3(tree,0,0,2,3);
        long end3 = System.nanoTime(); 
        update3(m3, tree, 2,3,3);// 2->3
        int sum3_2 = sum3(tree,0,0,2,3);        
        System.out.println("Time:"+(long)(end3-start3)+",sum=" +sum3_1+",sum2=" +sum3_2);
    }

}

No comments:

Post a Comment